A Response to Frequently Asked Questions about the 2018 Lake Okeechobee, Caloosahatchee and St. Lucie Rivers and Estuaries Algal Blooms

Microscopic image of blue-green algae (Microcystis) collected at Port Mayaca, June 2018.

Heavy rainfall with Hurricane Irma in 2017 and a rainy spring in 2018 set the stage for large-scale summer algal blooms in Lake Okeechobee and the St. Lucie and Caloosahatchee Rivers and Estuaries. Concerned residents and visitors flocked to social media. Authors Lisa Krimsky, Ed Phlips, and Karl Havens read their posts and tweets and now respond to concerns and questions about algal blooms in this 7-page fact sheet published by UF/IFAS Extension and the Florida Sea Grant College Program.
http://edis.ifas.ufl.edu/sg159

Climate Change: Effects on Salinity in Florida's Estuaries and Responses of Oysters, Seagrass, and Other Biota

Figure 3. The oyster bed is photographed at low tide when the animals are exposed to the air. These are called inter-tidal oyster beds. In some places in Florida, where the water is deeper in the estuary, the oysters always are underwater. These are called sub-tidal oyster beds. Credit: UF/IFAS photoFlorida’s economically important estuaries could be heavily impacted by sea-level rise and altered river flow, both caused by climate change. The resulting higher salinity, or saltiness of the water, could harm plants and animals, alter fish and bird habitat, and reduce the capacity of estuaries to provide such important services as seafood production and the protection of shorelines from erosion. This 6-page fact sheet explains the importance of estuaries, salinity in estuaries, and provides examples of stress from extreme high salinity. Then it explores the projected change in climate that could affect salinity in estuaries, how plants and animals would be affected, mitigating effects, and other impacts of climate change on estuaries. Written by Karl Havens, and published by the UF Department of Sea Grant, June 2015.
http://edis.ifas.ufl.edu/sg138

Climate Change and Ecosystem Services of Florida's Largest Water Body: Lake Okeechobee

Figure 1. A photo of Lake Okeechobee, looking out over the western marsh region to the open waters of the large lake. Credit: South Florida Water Management DistrictFuture climate change could result in higher temperatures and greater evaporative water loss in Florida. If these changes are not compensated for by more rainfall, the state’s largest water body, Lake Okeechobee, could experience prolonged periods of very low water levels and catastrophic loss of its ecosystem services, which are the benefits that people receive from ecosystems. This 6-page fact sheet provides background, optimal and actual water levels, projected changes in South Florida climate & their effects on water levels in Lake Okeechobee, their effects on ecosystem services, and possible remedies. Written by Karl Havens, and published by the UF Department of Sea Grant, June 2015.
http://edis.ifas.ufl.edu/sg137

Climate Change and the Occurrence of Harmful Microorganisms in Florida's Ocean and Coastal Waters

Figure 2. Nutrients and temperature act synergistically to stimulate blooms of harmful microorganisms in estuaries and nearshore ocean waters. Warming ocean waters caused by climate change are predicted to increase problems with blooms. Credit: Florida Sea GrantClimate change is expected to result in increased temperatures of nearshore ocean water, and this could lead to increased growth of harmful microorganisms. These include algae that form noxious or toxic blooms, including red tides, and bacteria and other pathogens. This situation could have negative consequences in regard to human health and also Florida’s ocean-related economy. This 6-page fact sheet discusses projected ocean temperatures, how harmful microorganisms living in the ocean might respond, and how this might affect people, and identifies actions that could be taken to reduce these impacts. Written by Karl Havens, and published by Florida Sea Grant, June 2015.
http://edis.ifas.ufl.edu/sg136

Deep Problems in Shallow Lakes: Why Controlling Phosphorus Inputs May Not Restore Water Quality (SGEF198/SG128)

Figure 1. Many processes affect phosphorus levels in a shallow lake.Florida’s thousands of lakes are shallower than most people realize, and some unique properties of shallow lakes make them challenging to restore if they have been degraded by nutrients or other pollutants.This 4-page fact sheet examines how water managers track nutrients as they cycle through Florida’s lakes. Written by Karl Havens, and published by the UF Department of Sea Grant, January 2013.
http://edis.ifas.ufl.edu/sg128

Effects of Climate Change on the Eutrophication of Lakes and Estuaries (SGEF189/SG127)

Figure 1. A bloom of blue-green algae on the water surface in the St. Lucie Estuary, Fla.Recent research suggests that climate change will reinforce the negative consequences of man-made eutrophication and make it more difficult to improve water quality in lakes and estuaries.This 3-page fact sheet was written by Karl Havens, and published by the UF Department of Sea Grant, September 2012.
http://edis.ifas.ufl.edu/sg127

Rethinking the Role of Nitrogen and Phosphorus in the Eutrophication of Aquatic Ecosystems (SGEF190/SG118)

Figure 1. Shoreline bloomFor many years, environmental agencies have sought to improve the water quality of lakes and estuaries by reducing inputs of phosphorus. New research indicates that we must reduce both phosphorus and nitrogen to reverse eutrophication symptoms. This 3-page fact sheet was written by Karl Havens and Thomas Frazer, and published by the UF Department of Sea Grant, June 2012.
http://edis.ifas.ufl.edu/sg118

A Guide to EPA’s Numeric Nutrient Water Quality Criteria for Florida (SL316/SS528)

This revised 10-page guide provides a basic, concise, and understandable description of the United States Environmental Protection Agency’s (EPA) numeric nutrient criteria for Florida, the background events that led to its release, some pertinent scientific issues, and implications for the future. Written by Thomas Obreza, Mark Clark, Brian Boman, Tatiana Borisova, Matt Cohen, Michael Dukes, Tom Frazer, Ed Hanlon, Karl Havens, Chris Martinez, Kati Migliaccio, Sanjay Shukla, and Alan Wright, and published by the UF Department of Soil and Water Science, March 2011.
http://edis.ifas.ufl.edu/ss528

SL316/SS528 A Guide to EPA’s Proposed Numeric Nutrient Water Quality Criteria for Florida

SL316, a 9-page illustrated guide by Thomas Obreza, Mark Clark, Brian Boman, Tatiana Borisova, Matt Cohen, Michael Dukes, Tom Frazer, Ed Hanlon, Karl Havens, Chris Martinez, Kati Migliaccio, Sanjay Shukla, and Alan Wright, provides a basic, concise, and understandable description of the United States Environmental Protection Agency’s (EPA) proposed numeric nutrient criteria for Florida, the background events that led to its release, some pertinent scientific issues, and implications for the future. Published by the UF Department of Soil and Water Science, February 2010.
http://edis.ifas.ufl.edu/ss528